Every 3-colorable graph has a faithful representation in the odd-distance graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Odd-Distance Plane Graph

The vertices of the odd-distance graph are the points of the plane R. Two points are connected by an edge if their Euclidean distance is an odd integer. We prove that the chromatic number of this graph is at least five. We also prove that the odd-distance graph in R is countably choosable, while such a graph in R is not.

متن کامل

Every Graph Is an Integral Distance Graph in the Plane

We prove that every nite simple graph can be drawn in the plane so that any two vertices have an integral distance if and only if they are adjacent. The proof is constructive.

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

Every 4-Colorable Graph With Maximum Degree 4 Has an Equitable 4-Coloring

Chen, Lih, and Wu conjectured that for r ≥ 3, the only connected graphs with maximum degree at most r that are not equitably r-colorable are Kr,r (for odd r) and Kr+1. If true, this would be a joint strengthening of the Hajnal-Szemerédi Theorem and Brooks' Theorem. Chen, Lih, and Wu proved that their conjecture holds for r = 3. In this paper we study properties of the hypothetical minimum count...

متن کامل

Every 4-regular graph is acyclically edge-6-colorable

An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamčik (1978) and later Alon, Sudakov and Zaks (2001) conjectured that a(G) ≤ ∆ + 2 for any simple graph G with maximum degree ∆. Basavaraju and Chandran (2009) show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2015

ISSN: 0012-365X

DOI: 10.1016/j.disc.2015.03.021